Roll No. \qquad Total Printed Pages - 6

F-3768

B.Sc. (Part - III) EXAMINATION, 2022

(Old/New Course)
MATHEMATICS
Paper First
(Analysis)

Time : Three Hours]
[Maximum Marks:50

नोट : प्रत्येक प्रश्न से कोई दो भाग हल कीजिए। सभी प्रश्नों के अंक समान हैं।

Note : Attempt any two parts of each question. All questions carry equal marks.

इकाई - 1 / Unit - 1

1. (अ) सिद्ध कीजिए कि प्रत्येक निरपेक्षतः अभिसारी द्विक श्रेणी अभिसारी होता है।

Every absolutely convergent double series is also convergent.
(ब) फलन $f(x, y)=\left\{\begin{array}{cc}\frac{x^{4}+y^{4}}{x^{2}+y^{2}}, & x^{2}+y^{2} \neq 0 \\ 0, & (x, y)=(0,0)\end{array}\right.$ के लिए श्वार्ज प्रमेय का सत्यापन कीजिए।

Verify the Schwarz's theorem for the function
$f(x, y)=\left\{\begin{array}{cc}\frac{x^{4}+y^{4}}{x^{2}+y^{2}} & \text { when } x^{2}+y^{2} \neq 0 \\ 0 & \text { when }(x, y)=(0,0)\end{array}\right.$
(स) अंतराल $(-\pi, \pi)$ में फलन $f(x)=x \sin x$ की फोरियर श्रेणी ज्ञात कीजिए एवं निगमन कीजिए कि-
$\frac{\pi}{4}=\frac{1}{2}+\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{5.7}$.
Obtain Fourier series of the function $f(x)=x \operatorname{Sin} x$ in the interval $(-\pi, \pi)$ Hence deduce that-
$\frac{\pi}{4}=\frac{1}{2}+\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{5.7}$.

इकाई -2 / Unit - 2
2. (अ) सिद्ध कीजिए कि प्रत्येक संत्त फलन रीमान् समाकलनीय होता है।

F-3768

Prove that every continuous function is Riemann integrable.
(ब) फलन $\int_{a}^{b} \frac{d x}{(x-a)^{n}}$ की अयिसारिता का परीक्षण कीजिए।
To test the converyence of the function $\int_{a}^{b} \frac{d x}{(x-a)^{n}}$.
(स) यदि $|\propto|<1$, तो सिद्ध कीजिए कि :
$\int_{0}^{\pi} \frac{\log (1+\propto \cos x)}{\cos x} d x=\pi \sin ^{-1} \propto$
If $|\propto|<1$, then prove that
$\int_{0}^{\pi} \frac{\log (1+\propto \cos x)}{\cos x} d x=\pi \sin ^{-1} \propto$

इकाई -3 / Unit - 3

3. (अ) दिखाइये कि फलन $\mathrm{u}=\frac{1}{2} \log \left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)$ हारमोनिक है एवं इसका हारमोनिक संयुग्मी ज्ञात कीजिये।

Show that $\mathrm{u}=\frac{1}{2} \log \left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)$ is harmonic and find its harmonic conjugate.
(ब) दिये गये द्विरैखिक रूपांतरण
(i) $w=\frac{3 z-4}{z-1}$
(ii) $\mathrm{w}=\frac{3 i z+1}{z+i}$ का स्थिर बिन्दु एवं प्रसामान्य रूप ज्ञात कीजिए।

Find the fixed points and the normal form of the bilinear transformation.
(i) $w=\frac{3 z-4}{z-1}$
(ii) $w=\frac{3 i z+1}{z+i}$
(स) दिखाइए कि रूपांतरण

$$
(w+1)^{2}=\frac{4}{z}
$$

परवलय $y^{2}=4(1-x)$ के बाहरी क्षेत्र को w-सतह में इकाई वृत्त के आंतरिक भाग पर रूपांतरित करता है।
Show that the transformation:

$$
(w+1)^{2}=\frac{4}{z}
$$

Transform the region outside the parabola $y^{2}=4(1-$ x) into the interior of the unit circle in w - plane.

इकाई -4 / Unit - 4

4. (अ) दूरीक समष्टि को परिभाषित कर सिद्ध कीजिए कि
$|d(x, z)-d(y, z)| \leq d(x, y) \forall x, y, z \in X$
Define metric space and in a metric space (x, d) prove that-
$|d(x, z)-d(y, z)| \leq d(x, y) \forall x, y, z \in X$
(ब) बनाक नियत बिन्दु प्रमेय को लिखिए एवं सिद्ध कीजिए।
State and prove Banach Fixed point theorem.
(स) दिखाइये कि $\sqrt{8}$ परिमेय संख्या नहीं है।
Show that $\sqrt{8}$ is not a rational number.

इकाई -5 / Unit - 5

5. (अ) बेयर केटेगरी प्रमेय को लिखिए एवं सिद्ध कीजिए।

State and prove Baire category theorem.
(ब) दिखाइये कि प्रत्येक कांम्पेक्ट(compact) दूरीक समष्टि बोलजानो वाइरस्ट्रास के प्रगुण को रखता है।

Every compact metric space has the Bolzanoweierstrass property.
(स) सिद्ध कीजिए कि R का उपसमुच्चय A संयुक्त होता है यदि और केवल यदि यह एक अंतराल हो।

Prove that a subset A of R is connected if and only if it is an interval.

